Постоянный участник
Регистрация: 27.04.2009
Сообщений: 55,400
|
Цитата:
Сообщение от Островок
Поэтому подробненько с доказательствами, это кто хочет, сам.
|
Ладно.
Учитывая, что письменных доказательств не так много, из того, что известно вот -
Числа майя от 1 до 20 с нулём
Цитата:
Считается, что основание, равное двадцати, тоже имело вполне приземленную причину – количество пальцев на руках и ногах у стандартного человека (как и основание 10 по сумме пальцев на руках)
|
Цитата:
Однако в отличие от привычной нам системы записи, у майя в их двадцатеричной было одно (достаточно странное) исключение – в одном месте основание вдруг менялось с 20 на 18. Причем почти сразу – буквально в следующем за первой двадцаткой разряде, а далее все возвращалось к той же самой двадцатке, что приводило к последовательности в виде:
Кин = 1
Виналь = 20 кинов = 20
Тун = 18 виналов = 360
Катун = 20 тунов = 7200
Бактун = 20 катунов = 144 000
Пиктун = 20 бактунов = 2 880 000
Калабтун = 20 пиктунов = 57 600 000
Кинчильтун = 20 калабтунов = 1152000000
Алавтун = 20 кинчильтунов = 23040000000
….. и так далее.
В современных текстах о майя, чтобы не рисовать иероглифы, применяется более привычный нашему глазу метод записи их чисел, который использует точки для обозначения разрядов. Например: 3.12.11.0 – это 3 катуна, 12 тунов, 11 виналов, 0 кинов, что составляет число, равное 3х7200+12х360+11х20+0х1 = 26140.
Если, уважаемый читатель, Вы разобрались с этим, то это – все: вы уже усвоили полностью всю (!!!) «математику» майя!..
И бесполезно искать в майянских текстах что-то похожее на правила сложения дробей, как у древних египтян, или стандартизированные методы вычисления площадей трапеций, как у древних шумеров. Ничего подобного в индейских текстах нет!..
|
Цитата:
Г.Ершова в своей книге «Древняя Америка: полет во времени и пространстве» пишет: «Судя по свидетельствам испанцев, индейцы очень быстро считали и легко могли оперировать огромными числами. Согласно описаниям, математики, а также «бухгалтеры» майя пользовались оригинальным приспособлением из камешков наподобие счетов. Даже на древних изображениях мы видим сидящих рядом с правителями придворных, занятых важными хозяйственными подсчетами. Перед ними разложены мелкие предметы (камешки), в руке у каждого палочка».
Думаю, что, случайно или нет, Ершова привела весьма удачный образ для сравнения – бухгалтерские счеты, которые современное молодое поколение, возможно, уже и не знает, но которые очень широко использовались не только в бухгалтерии, но и в торговле непосредственно вплоть до замещения их калькуляторами. Дело в том, что в них используется фактически тот же самый принцип, на котором выстроена система записи чисел майя, – комбинированный аддитивно-позиционный принцип. Костяшки счетов представляют собой единицы, а проволочки, на которых расположены костяшки, – соответствующий разряд числа (только в нашей десятеричной системе).
|
Цитата:
Кстати, авторитетнейший специалист по майянским текстам Майкл Ко в своей книге «Майя. Исчезнувшая цивилизация: легенды и факты» упоминает мимоходом про некую «таблицу «Дрезденского кодекса», которая включает в себя таблицу умножения числа 78». Спрашивается, зачем было бы включать в такой важнейший документ (который содержит в себе известные астрономические таблицы майя), какую-то дополнительную таблицу умножения, если бы эта операция выполнялась легко и свободно?!.
Но даже если сделать скидку на то, что операцию умножения все-таки как-то можно выполнять, пусть и заменяя ее сложением, то для операций деления (и уж тем более извлечения квадратного корня), принцип счета по сетке (аналогичной бухгалтерским счетам) не приспособлен абсолютно. Попытка деления всего лишь на 2 уже выльется в довольно непростой алгоритм, а на 3 и более приводит к таким сложным процедурам, что проще будет вообще не заниматься делением.
Более того. Не очень значительный для простого сложения «недостаток» со сменой основания в третьем разряде довольно сильно усложняет другие арифметические операции – даже операцию умножения, ведь нужно не промахнуться с поправками на основание разряда такое количество раз, на сколько идет умножение (разлагаемое на операции сложения).
Впрочем, Томпкинс тут же это и демонстрирует, показывая насколько легко тут ошибиться с поправкой: приводя пример даже простого сложения чисел, он моментально забывает о смене основания разряда и использует везде шаг в 20 раз: 1 – 20 – 400 – 8000 – и так далее…
|
Цитата:
зачем понадобилось менять в одном месте – на третьем разряде – само основание системы счета с 20 на 18 ?.. Подобное искажение единой линии представляется нелогичным и даже неудобным.
Большинство историков сходится в том, что данное искажение было неким образом связано с астрономическими и календарными вычислениями майя. И на это подталкивает еще одна особенность индейской «математики». Дело в том, что в сохранившихся письменных источниках изображения чисел так или иначе привязаны именно к счету дней.
Но если принять за данность такую привязку, странности искажения системы записи чисел в третьем разряде действительно можно дать более-менее правдоподобное объяснение. Эта запись адаптирована под 360-дневный год, в котором 18 месяцев по 20 дней. И эта адаптация позволяет не только производить подсчет количества 360-дневных лет по уже простой двадцатеричной системе (без каких-либо «исключений» в разрядах), но и легко переходить от счета в днях к счету в годах и наоборот.
Для примера: дата 5.11.7.9.18 означает количество дней, равное 5х144000+11х7200+7х360+9х20+18х1 = 801918. Если перейти теперь к системе с 360-дневным годом, то последняя «цифра» в записи будет означать день месяца, предпоследняя – номер месяца, а остаток (исходная запись с отброшенными двумя последними разрядами) будет означать количество 360-дневных лет. В приводимом примере получим: 18-й день 9-го месяца года, который будет иметь вид 5.11.7 в обычной двадцатеричной системе счета. Или, переходя к обычной нам десятеричной системе (учитывая, что 5х400+11х20+7х1=2227), получим 18-й день 9-го месяца 2227 года.
Действительно, удобно. Но…
Опять возникает «но»…
Если перейти от формально-математических лет к реальным годам, то счет получается довольно приблизительный. Это, конечно, не наша привычная фраза типа «где-то лет десять-двенадцать назад», но все-таки. Погрешность в 5 с лишним дней за год – довольно существенна. Даже в приведенном несколькими строками выше примере ошибка составит около трех десятков лет, то есть что-то сопоставимое по порядку величины со средней продолжительностью жизни того же индейца майя.
А где же тогда хваленая точность календаря майя?!.
|
|